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Abstract. The main objective of this paper is to find an analytic expression for the maximum 
eigenvalue of a special matrix A of order n,  with n in the range 2 G n < x. This will be 
done using a new result which states that if we know any entry Cki(  j)  of any real positive 
square matrix C’ (where j denotes the number of iterations), then we know, after taking 
the thermodynamic limit (lim j + x), the maximum eigenvalue of this matrix. 

The analysis that we present in this paper is of particular interest, because the structure 
of the above-mentioned matrix A appears in several problems related to physical and 
biophysical systems in one dimension, i.e. the one-dimensional fluid model, denaturation 
of D N A  (where we take loop entropy into account), in the study of the homogeneous island 
model, etc. 

As a particular application of this method, we derive the Takahashi equation of state, 
which is the more general solution for a one-dimensional fluid model when we assume 
that the interaction potential between nearest-neighbour particles is arbitrary. 

1. Introduction 

As is well known, if we want to have intensive thermodynamic variables which are 
independent of the shape of the container, we must analyse physical (or biophysical) 
problems in the thermodynamic limit. Furthermore, it is known that in this limit only 
the maximum eigenvalue of the grand partition function (GPF) is of interest (when we 
can write this ensemble as a matrix product). However, as is also known, there are 
very difficult problems in computing the maximum eigenvalue when the order of the 
matrix is greater than 3 x 3 (in the case of 4 x 4 matrices, only in some special cases is 
it possible to find an analytic solution for the maximum eigenvalue). Bearing this in 
mind, in a previous paper [ l ]  we found the maximum eigenvalue for a fourth-order 
matrix, which turned out to be of special interest in the analysis of potentiometric 
titration of polyelectrolytes [ 2 ] .  As an extension of this method, in this paper we find 
the maximum eigenvalue of a special matrix A that appears when we study many 
physical and biophysical problems. 

In 0 2 ,  we give the structure of the matrix A which appears when we analyse the 
denaturation of DNA [3] (if we take into account loop entropy) or as Poland and 
Scheraga also show, when we study a one-dimensional fluid model. Furthermore, in 
this section we show that the structure of the matrix also appears in the study of the 
island model [6]. Before proceeding to applications we will prove rigorously that in 
the thermodynamic limit, if we know any entry C k , ( j )  where j denotes the number of 
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iterations of CJ, then we know an analytic expression for the maximum eigenvalue of 
any real square matrix C. Finally, the remainder of § 2 (and § 3) are devoted to the 
application of this method for solving a problem of physical interest, i.e. the one- 
dimensional fluid model. 

In 0 3, we find the expression a l l ( j )  of the A’ for the one-dimensional fluid model, 
in the special case that the interaction potential between nearest-neighbour particles 
is given by a square-well potential. In the same section we prove that the same 
expression for the maximum eigenvalue can be obtained using a classical method, 
which gives us confidence in our approach. 

In 0 4, we compute the maximum eigenvalue for the matrix A for any order n in 
the range 2 < n < CO, when we assume in the above-mentioned problem that the potential 
interaction between nearest-neighbour particles is arbitrary, and we obtain the 
Takahashi [ 5 ]  equation of state as a special case. 

We think that the analysis developed here might lead to a good workable method 
for studying more complex matrices. However, our primary interest here is to illustrate 
one alternative technique to find the maximum eigenvalue of one special matrix. 

2. The structure of the matrix A 

The structure of the matrix A, which represents many physical and biophysical problems 
(depending on the definition of the entries, as explained below) is given by 

A =  

( 1 1 1  a12 . . .  a 1 . n - 2  0 1 , f l - I  UI ,n  

a21 0 . .  . 0 0 0 
0 a32 . . . 0 0 0 

0 0 . . .  un-l ,n-2 0 0 
0 0 . . .  0 a n , n - 1  a n , n  

. . .  

In the matrix treatment for a finite chain in the homogeneous perfect-matching 
model [3], the above structure appears with the entries defined as a,, = s, a l , k  = 

l,, (where ‘re’ indicates that the matrix element so designated will always contribute 
to the statistical weight of the right-hand free chain end of the molecule). The factor 
S ( i )  gives the statistical weight for all possible loop sizes (the definition of the other 
factors, s, go, etc, can be found in [3]). It is important to mention that the fact that 
the double-stranded helix denatures by forming loops (in addition to a possible 
unwinding from the end) is, as Poland and Scheraga [3] say, one of the most important 
features of this model. Furthermore, the loop formation is also the most difficult 
feature of the model to treat. 

On the other hand, the importance of taking medium-range as well as short-range 
interactions into account in the statistical mechanics treatment of the alpha helix and 
extended structures in proteins is well known [4]. It is possible to take into account 
the two types of interaction through an island model [6], as we see below, and in this 
case the structure of the matrix A given in equation (1) appears again. In the island 
model, the following assumption is made: the ith and ( i +  I)th residues in the chain 
can interact with each other if and only if all of the ith to ( i  + i)th residues are in the 
same state, 5 for example (where 5 could represent an alpha helix state). In this model, 

S c o S (  k - 1) for k = 2,3, . . . , n - 1, = S,, , u k + l , k  = 1, for k = 1,2, . . . , n - 1 and = 
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we assume that there cannot be any interaction between a residue in a 6 state and a 
residue in another state x (where x could represent a coil state) or between two residues 
in the x state. In this model, if we assign the statistical weights e, and 1 to the states 
6 and x, respectively, and the statistical weights ep and 1 to interacting and non- 
interacting pairs of ith and ( i  + 1)th residues for 1 s p < I ,  respectively, we find that the 
matrix that appears in this problem is given by the same matrix as in equation (1) 
with the entries defined in this case as a l , k  = 1 for l s k ~  n, a k + l , k  = Ek for k =  
1 , 2  , . . . ,  n - l a n d a , , = E ,  where E k = E k - l e k a n d  E , = e , .  

Finally, we mention that, as Poland and Scheraga [3] show, it is possible to obtain 
the structure of the matrix A when we study a one-dimensional fluid model. In this 
model, the GPF can be written as a matrix product, where the matrix A is given by 
equation (1) for each site, with a l k  =yqk for k = 1,2, .  . . , n and ak+l ,k  = 1 for k = 
1,2 , .  , . , n - 1 and a,,, = 1. Here the fugacity y is given by: y = ASA-I. A-' appears 
from the momentum integral for each particle, A = exp(-Pp) appears from the con- 
struction of the GPF, and 6 represents the lattice constant in this model (i.e. if L 
represents the length of the one-dimensional lattice, then the number of sites is j = LS-I)  
and q k  is a Boltzmann factor assigned to a pair of particles separated by k sites, i.e. 
q k  = exp( -p4( kr,S)), where ( r , S )  represents the distance between lattice sites and 
4(  r )  is an arbitrary potential, with r = r,k& 

The model fluid treated by these authors has some intrinsic interest, firstly, because 
they approach the continuum by a variable lattice 8, thus allowing us to see the accuracy 
of the lattice model and, secondly, because in the thermodynamic limit (after taking 
the continuum limit S --f 0) it is possible to derive the Takahashi [5] equation of state. 
For these reasons, in the next section we compute the maximum eigenvalue of the 
matrix A, when the entries are defined as in the last problem, i.e. for the one-dimensional 
fluid. To do this we use the same method that we introduced earlier [l], i.e. through 
a k , ( j ) ,  where j denotes the number of iterations of the A-' matrix. In the following we 
prove that the next statement is valid. 

Let C be any real positive square matrix. Then there exist ( k ,  I )  such that 

lim ( l / j )  In Z = lim (l / j)  In Ck,( j )  = In A,,, 
1-m I - =  

where A,,, is the maximum eigenvalue of C which is necessarily real and positive. 

C', the grand partition function (GPF) is given for the next expression: 

where U and V are appropriated vectors. 

the next relation is valid too: 

From a statistical mechanics point of view, it is known that, in terms of the matrix 

E = U C J V  (2) 

Taking into account the above relation, then (if we assume that C is diagonalisable) 

E = U I I A ' I T ' V  because C = IIAH-'  ( 3 a )  
where and II-' are appropriated matrices that satisfy IIII-' = I and A is given by 

where A will be an eigenvalue of C if and only if det(C - AI1 = 0. 
Then the GPF, as given by equation (2), can be rewritten as 
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Taking the natural logarithm, we find 

In the last expression for the GPF we can rewrite Ckl(j) using the relation given in 
equation (3a)  as 

where A are the eigenvalues of the matrix C and t are coefficients. Arranging the 
eigenvalues in the following manner (and taking their absolute values, since some of 
them can be complex): 

A I  3 lAzl  3 lA31 3 . .  . 3  lA, /  

it is easy to see that 

lim ( l / j )  In E = lim ( l / j )  In Ck/( j )  = In A,,, (4) 
I - =  j -oc 

because in the thermodynamic limit, IA i /Amax( j  + 0 or 1 if A,,, > A i  o r  A,,, = A i  for the 
order of the matrix n, in the range 2 -  <n<co.  

We pause here to point out some important facts related to the proof of the last 
statement?. First, if we identify A,,, with A I ,  then tLl in equation (3c) cannot be zero 
for all (k, I ) ,  otherwise C would be independent of its maximum eigenvalue. Secondly, 
we assume in the proof that C is diagonalisable, i.e. C possesses a complete set of 
eigenvectors and  they become the columns of n. However, in some special cases some 
eigenvectors are missing and  a diagonal form is impossible. In such a case we want 
to choose some matrix M so that M-’CM will be as nearly diagonal as possible. The 
result of this effort of diagonalisation is the Jordan form: J = M-’CM = A, with J 
entirely made up  of blocks Ji, where each Jordan block is a triangular matrix with 
only one single eigenvalue [7]. Then we can use these properties to show that a similar 
proof for the statement works if C is not diagonalisable. Thirdly, we can state that 
the last statement is valid generically for all ( k ,  I )  and would only fail for a particular 
( k ,  I )  in a pathological case. 

Since our special matrix A of order n is non-negative for all the cases and, given 
the structure of A, it is not difficult to prove that for j Z  n, where n is the order of the 
square matrix A,  A’ is a positive matrix. Next we prove the last statement. Consider 
the matrix A, with entries a,&(l) defined as akl( l )  > 0 f o r k  = 1 and 1 s I c n, a k + i , k (  1) > 0 
for l G k c n - 1  and a,,,(l)>O. 

Therefore, by the definition of the matrix product 
n 

p = l  
u k / ( j )  = a k p a p / ( j  - 1) V j >  1 

it is easy to see that for j = 2, the entries of A2 satisfy 

akd2) > 0 f o r k = l , 2 ;  l = s l c n  

uk+2,k(2) ’ 0 for 1 c k s n -2  

an,n(2) > 0 

f I wish to express my gratitude to the referee for pointing this out. 
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and for j = 3, the entries of A3 satisfy 
a d 3 )  > 0 f o r k = l , 2 , 3 ;  l ~ l ~ n  

ak+3,k(3)>0 
a n , n  > 0. 

for 1 s k s n - 3  

From this, we find that the following relation is valid for j 3 n :  

In such a case we can say that AJ for j 3  n is a positive matrix. 

AJ and, using the result obtained in a previous paper [ 11, we can write ukf( j) as 
a k l ( j ) =  a k , a , l ( j - 1 ) + a , a k a k l ( j - 2 ) + .  . .+akxJ-3akak l ( l )+akAJ- - 'a '  

a k l ( j )  > 0 for 1 S k c  n, 1 Is n. 

In the one-dimensional fluid model, uk l ( j )  represents the (k, 1) entry in the matrix 

with 

where the matrix is obtained from A by deleting the row k and the column k. The 
vector a k  is the kth row of A with the element k deleted. Similarly, a m  is the mth 
column of A without the entry k, for m = k, 1. The products are matrix products and 
scalar products. 

The recursion relation given in the above equation can be solved by making use 
of the general iterative method developed in [SI, and the solution can be written as 
follows: 

I EJ:'={(Il , . . . ,  1,): I , = j - l , l , > O a n d i n t e g e r s  
z=1 

(8) 
_ -  CJ cJ-11 c J P 5 - 1 2  ' i f , ,  , f , J J -  J - 1 1  J - f l - f ? " '  J - J  

Given the structure of matrix A, we resolve equation ( 5 )  using equations (7) and 
( 8 )  for the entry a I l ( j )  of the AJ. The entry a l l ( j )  is obtained using equation (7) as 
follows. The submatrix x is given by 

0 0 0 . . .  0 0 0 

A= jl . . .  p p 1 : :  p 0 p ]  
0 0 0 . . .  1 0  0 
0 0 0 . . .  0 1 1 

( 9 )  

where 
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In this application, we recall that the entries are defined as ek = yqk for 1 s k c n, and 
if we take into account equation (6) and  the structure of the vectors a, and a ' ,  it is 
easy to see that only the q , ( j  - 1) entry of k-' for 1 < j G n -2  is of interest. With 
these considerations it is easy to see that the submatrices 2' for 1 < j  6 n - 2 are given 

0 . . .  
1 . . .  
0 . . .  

0 ... 
. . .  

0 . . .  

6'= j: 
It is important to note that a n , l ( j )  = 1 for j z  n -2. 

The element C;-, defined in equation (6) is then given by 

C j l f  = U , A ' - ~ - ~ U '  = l > p + 2  

c;If = a , ,  l = p + l  

0 . . .  . 
. . .  

1 . . .  ::I (11) 

for 0 c p c j - 2. Then, using equation (8) and taking r = 1, we obtain 

1 

l s = j - 1  for I ,  > 0 
, = I  

a;,,, * I , ) )  I = q,, = c: = 

Carrying on with this analysis, we obtain for r = 2 :  

2 

I r = j - l  1, > 0. 
t = I  

The following cases can be noted for this value of r :  
(i) 1, = 1 and l2 = j - 2 :  

(13) 

(14) 

(15) 

It should be observed that the same expression is obtained by permuting the 1 in 
equation (16). Then, all combinations of 1, and 1, can be written in the following form: 

Then we obtain, for r = 3, 

3 

1 l i = j - l  for li > 0. 
i = l  

In this case, as in the previous case, we must consider all the permutations of 1. For 
example, for I , ,  l2 and I ,  we obtain 
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It is not difficult to see that in this case we obtain one expression equivalent to 
equation (18) and it is given by 

Then, following with this procedure, it is clear that for the general case, r = k, the 
corresponding expression will be 

~ - k  j - J l - ( k - l )  J - ( / l + l , +  . . + / ~ - * ) - 2  c & I , & I , .  . ~ j - ( ~ , + , , , + ~ ~ ~ l ~ - ~ ~  (22) 
l l _ , = l  

c c . . .  
1 1 = 1  / > = I  

Using the above relations, we can find that the entry a l l ( j )  is given by 
j - 1  j - r  J - ) ip r+1  j - ( l i + . . . + / , ~ 2 j - 2  

a l l ( j )  = ( c c . . . & i l & i 2 . .  . & j - ( l , + / z + . . . + L ~ , ) - l  
r = l  1 1 = 1  1 2 = 1  1 , - 1 = 1  

j - l  j - i  , - r - ,  j - ( l , + . . . + l , - 2 i - 2 - i  

r = l  ] , = I  l r - l = l  

(23) 

+[.r,( c c * * .  c & I , & / > .  . . & j - ( / g +  ...+ / , - I ) - i  

+ E J - * .  

Equation (23) represents an analytic expression for the entry a l l ( j )  of the matrix A' 
for j 5 2. Naturally, if we are interested in the thermodynamic limit, this expression 
represents the maximum eigenvalue of the matrix A. In this limit, the following property 
results: 

0 . . .  
for every j 3 n - 2 (24) 

. . .  
as we can see through equation (1 1). Then 

= E, for every 1 - p 5  n - 2  (25) 

where E,  corresponds to the entry a l , n  of the matrix A. 
In the next section we find different expressions for the entry a, j )  given in equation 

(23), depending on the shape of the interaction potential, the value of the lattice 
parameter S and the value of j (the number of iterations). 

3. The solution for a square-well type potential 

In what follows, we assume that the reader is familiar with [3], and we omit the 
discussion of many aspects related to the lattice model. In the one-dimensional Auid 
model we consider, as in [3], that each particle of the lattice is assigned the constant 
interparticle potential 4 ( k )  over the interparticle distance r,S(k -4) to r,S(k +;). In 
the case where 6 - 0  (as we will see in §4) ,  4 ( k )  approaches the smooth function 
4 ( r ) ,  as we can see in figure 1. It is important to say that in this section we take 6 = 1, 
which represents a very poor approximation to the continuum, i.e. for S + 0. However 



3360 J Vila 

Figure 1. + ( r )  for S = 1 ( -  - - )  and S + O  (-). 

our primary interest here is to illustrate the technique developed in 5 2 and show that 
in the thermodynamic limit, lim j + 03, a l l (  j )  gives us the maximum eigenvalue of the 
GPF. Then we prove that this maximum eigenvalue can be obtained through a classical 
method, i.e. evaluating the secular equation given by ] A  - A I ]  = 0. 

In  this simple application we assume that the interaction potential between nearest- 
neighbour particles is given by 

r < ro 
r o s r < 2 r o  
r 2 2r0 

or, since r = kroS for k lattice sites, +( r )  = 0 and q k  = 1 for k 2 n = 2 / S .  
n = 2 defines, firstly, the order of the matrix A, i.e. order two, and, secondly, the 

number of lattice sites beyond which the potential is truncated to zero, as we can see 
in figure 1 .  

With the above consideration in mind we next find an  analytic expression for ~ , ~ ( j ) ,  
valid for any j 3 2, and then we will find the maximum eigenvalue taking the thermody- 
namic limit, i.e. using the relation, given by equation (4), 

lim ( l / j )  In akl( j )  = In A,,, . 
I - =  

It is useful to remember that every entry of the matrix A' can be written as 
1 - 1  

, = I  
%/(A c c - : a k k ( i ) + P k l ( J - 2 )  

d j  - 1) C C.l-'ak/( i) + 
J - 2  

j - 3 ) .  
I = ]  

If 6 = 1 ,  then 

a ,  = E2 . I =  1 A = l  

and the coefficients will be given by 

l s p + 2  C J - P  ,-/ - - a * ' i - p - * U L  = E2 

c;zy = E l  I = p + l  

P k r ( j - p ) = a k A J J - P a ' =  E~ YO zs p c j .  
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Writing uk/(  j )  and uk)(  j - 1) explicitly 

it can be seen from equation ( 2 9 )  that 

1 - 3  1 - 3  

c { a k / ( i ) =  C { - ' a k [ ( i )  ( 3 2 )  
1 = 1  1 = 1  

and using this result it is easy to write as 

U k f ( j )  = ( 1  + c ; - l ) a k f ( j  - I ) +  c q - 2 -  C ; : h k f ( j  - 2 ) +  P k f ( j - 2 )  - P k d j  - 3 ) .  ( 3 3 )  

From equation ( 3 0 )  it is clear that 

P k I ( j - 2 )  = P k l ( j - 3 )  f o r j ~ 2  

and then 

where the coefficients are given by 

l - p a 3  
1 - p = l  with CA= 7~ 

l - p = 2  
( 3 5 )  

where 

a = ( 1  + E , )  Y = ( E 2 -  E l )  7r = ( E :  + E 2 ) /  El. ( 3 6 )  

Applying equation (7)  to solve the recurrence given by equation ( 3 4 ) ,  it is not 
difficult to see that a { f , ,  , l r ) i  is zero for r < j / 2 .  

For r 5 j / 2  the following cases are noted: 
(i) if r = j / 2 :  Z:'", 1, = j ,  1, > 0 and integer: 

U { ! , ,  J , J  = c;-2c;1:. . . e;= y J l 2  

(i i)  if r = j / 2 + 1 :  X{'2T1 I ,  = j ,  I ,  > 0 and integer: 

(37) 

The terms in brackets represent all permutations of 1, which give the same result. 
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For the general case r = j / 2  + p  the following expression is easily deduced: 

Then using equation (7), we obtain for a l l ( j +  1) the following expression: 

y J ” + a J - ’ r r +  C ( J / ~ + P ) !  yJ’2-pa2p-r7r1. (41) 
( j /2-p)!(2p-r)!r!  

In the above expression the first term results from putting r = j / 2  
r = j .  

Equation (41) is an  analytic expression for a l l ( j +  1) and is 
even; a similar expression can be obtained for j odd. 

If we are interested in computing the maximum eigenvalue 
given in equation (4), then we have to write equation (41) as 

J 

and the second from 

valid for every j s 2  

through the relation 

Taking into account that y / a  < 1, equation (41) takes the form 

where p is the value of p that maximises the sum given in equation (43), 

P = ( j /2)5 6 = (1 +4y/a2)-”*.  (44) 

Replacing p in equation (43) and using the Stirling approximation for ( )! we obtain 

and using the equalities 

equation (45) takes the form 

j - m  lim ( l / j )  in a l l ( j )  = In ct +In( 1 + ( - I )  -In 2. (47) 

As can be easily demonstrated, the maximum eigenvalue A,,, of the matrix A with 
6 = 1 is given by equation (47), i.e. if we resolve the secular equation / A  - A l l  = 0. 
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4. The solution for an arbitrary potential 

In this section we find an analytic expression for the maximum eigenvalue of the matrix 
A of order n = 2/6, for any value of lattice parameter 6 in the thermodynamic limit. 
As a particular case, we derive the Takahashi equation of state, i.e. when we let S + 0. 
In this section we assume that the interaction potential is arbitrary among nearest- 
neighbour particles and the following relations are valid: 

for r < ro 
f o r r o s r < 2 r ,  
for r 3 2r0 

or, since r = kroS, 4(  r )  = 0 for k 3 n = 216. 
The following definitions, given by Poland and Scheraga [3], will be useful for the 

solution of this model. The number of sites j is equal to LIS,  where L is the length 
of lattice and 6 is the lattice variable. Simultaneously the parameter j satisfies 

where N represents the number of particles in the system and (T is an index designating 
the number of the sequence of two particles in the lattice separated by k sites. 

In terms o f  the above parameters the entries of the matrix A are given by 

Ek = Yqk V l s k s n  with qn = 1 .  ( 5 0 )  

n represents the number of lattice sites, beyond which the potential is truncated 
to zero, and it is not difficult to see that the matrix required for  a given value of S is n x n. 

Using the above definition we can see that the following relations are valid in the 
thermodynamic limit, i.e. for j + 00: 

i - 1  j N I  

for the first term of a l l ( j )  given in equation (23 ) .  It is not difficult to see that in the 
above expression each combination of the first term appears as a particular case of 
the second term when we let j + 00. Also, the following inequality is valid?: 

because the term (yqk, )  satisfies yqko > 0 Vk, .  
Then we can say that for j + 00 the following is valid: 

since 

t The inequality is valid for any value of the subscript i in the range 1 < i < j .  
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when we take l i m j  + CO. Using equation (4), we can write the following relation for 
a l l ( j ) :  

where, as is well known, the maximum eigenvalue is given by [3] 

as lim = ePpL + A;,~. (56) 

In the above expression for A,,,, p is the real pressure in the system and L is the 
volume, and we put A' as 

I - =  
A = exp(Pp8) 

A' = exp( PpSj )  = x'. 

Here 
N 

= x%'=lk,. = n x kc,,  

o= 1 

Using equation (57) in equation (55) we obtain 

(57) 

Since yqkX-k depends only on the number of unoccupied sites between two particles 
and is independent of its location in the lattice, we can write equation (58) as 

From the point of view of physics, we can see the term yqkX-k as the probability 
of finding two particles having k unoccupied lattice sites between them. Then we can 
say, without losing generality, that the following is valid: 

On the other hand, from a mathematical point of view, the above relation also 

Then, taking into account that the density p is given by the relation: 
satisfies the condition given in equation (59). 

- I  

we obtain, using equation (60), the following expression for p :  

Finally, if we let S + 0, it is not difficult to prove that the equation of state is given 
by 
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The above expression is the known Takahashi [5] equation of state for a one- 
dimensional fluid model, when we suppose that the interaction occurs only among 
nearest neighbours. Furthermore, from the above relation it is clear (as Takahashi 
also points out) that p must be a single-valued function of p .  This means that the 
coexistence of two phases is impossible in a one-dimensional system for any choice 
of the potential (the same can be concluded from the theorem of Van Hove [9]). 

5. Discussion 

If we review the books devoted to matrix theory, we find that the eigenvalue problem 
is one of the outstanding successes of numerical analysis [7]. Nevertheless, until now 
no one has known how to solve it in analytic form for any case, because everything 
depends on the size and properties of the matrix and on the number of eigenvalues 
that are required. In particular, if we are interested in obtaining an analytic expression 
for the maximum eigenvalue (as in almost every physical and biophysical problem) 
we are of the opinion that the method used in this paper is useful. 

On the other hand, if we are interested in bounded values of the eigenvalues of 
any matrix we can use the Gershgorin theoremt (the circle theorem [7]). However, 
this method does not give us an analytical expression for the maximum eigenvalue 
(only in certain cases is it possible to find a bound value of this). Finally, we think 
that both the method used in this paper and the Gershgorin theorem are useful, but 
with different final results. 
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